YEAR 1

Calculating strand: ADDITION

Vocabulary

Key Questions

Addition, add, forwards, put together, more than, total, altogether,
distance between, difference between, equals = same as, most, pattern,
odd, even, digit, counting on, part, whole

How many altogether? How many more to make...?
I add ...more. What is the total? How many more is... than...? How much more is...? One more, two more, ten more... What can you see here? Is this true or false? What is the same? What is different?

Example Questions		
Basic	Advancing	Deep
Use ...and ... in a number sentence. Illustrate the problem Name the number bonds Memorise the addition facts to ... Match the answers to the number problems Tell a friend how you solved the problem	Compare which method you prefer to use Identify patterns in the number sentences Modify the numbers to change the answer Organise the numbers into a number sentence.	Prove how you know the answer is... Investigate how many different ways you can make ...using addition. Explain you method Create two addition number sentences from the given numbers.

tRUST

YEAR 2

Calculating strand: ADDITION

Vocabulary

+, add, addition, more, plus, make, total, altogether, how many more to make...? how many more is... than...? how much more is...? =, equals, sign, is the same as, Tens, ones, partition, near multiple of 10 , tens boundary, More than, one more, two more... ten more... one hundred more, part, whole

How many altogether? How many more to make...? How many more is.. than...? How much more is...?
Is this true or false?
If I know that $17+2=19$, what else do I know? (e.g. $2+17=19 ; 19-17=$ 2; $19-2$ = 17; 190-20 = 170 etc).
What do you notice? What patterns can you see?

Example Questions		
Basic	Advancing	Deep
Use ...and \ldots in a number sentence.	Compare which method you prefer to use	Prove how you know the answer is...
Name the number bonds	Identify patterns in the number sentences	Investigate how many different ways you can make ...using addition.
Memorise the addition facts to \ldots	Modify the numbers to change the answer	Explain you method
Match the answers to the number problems	Organise the numbers into a number sentence.	Create two addition number sentences from the given numbers.

Concrete		Pictorial Abstract	
sıəqunu భ!̊!p əן8ิu!s ع Bu!pp \forall	$4+7+6=17$ Put 4 and 6 together to make 10. Add on 7. Following on from making 10, make 10 with 2 of the digits (if possible) then add on the third digit.	Add together three groups of objects. Draw a picture to recombine the groups to make 10.	$\begin{aligned} 4^{4+7+6} & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make 10 and then add on the remainder.

Addition of two 2-digit numbers should move onto examples with crossing $10-$ as shown in the Interim framework 2018/2019

Only move children on to using the column methods once they have become secure in the use of number lines.
Ensure you follow the CPA approach to support this new strategy.
Use part/whole model to support the variation.

	Add together the ones first, then add the tens. Use the Base 10 blocks first before moving ohto place value counters. $24+15=$ $44+15=$	After physically using the base 10 blocks and place value counters, children can draw the counters to help them to solve additions.	
	Make both numbers on a place value grid. Add up the units and exchange 10 ones for 1 ten.	Using place value counters, children can draw the counters to help them to solve additions.	

Objective	Concrete	Pictorial	Abstract
	Make both numbers on a place value grid. Add up the units and exchange 10 ones for 1 ten. As children move on to decimals, money and decimal place value counters can be used to support learning. NB By Year 4 children will progress on to adding four digit numbers.	100s Children can draw a pictoral representation of the columns and place value counters to further support their learning and understanding. NB Addition of money needs to have $£$ and p added separately.	$\begin{array}{r} 146 \\ \left.+\begin{array}{c} 527 \\ \hline 673 \\ 1 \end{array}\right] \end{array}$ As the children move on, introduce decimals with the same number of decimal places and different. Money can be used here.

tRUST

YEARS 5 \& 6	Calculating strand: ADDITION		
Vocabulary			Key Questions
tens of thousands boundary, Also see previous years			What do you notice? What's the same? What's different? Can you convince me? How do you know?
Example Questions			
Basic		Advancing	Deep
Use column addition to add... List all the different vocabulary for addition Tell me the method you have used to find the total Find the pattern and repeat it.		Predict if $\mathrm{x}+\mathrm{y}$ would total an odd or an even number. Estimate the answer to ..., work out the answer to check your estimation. Explain your method. Organise your calculation	Create your own word problem. Design your own menu/bedroom purchasing food/objects with a given amount to spend. Investigate distances travelled on a map.
Consolidate understanding using numbers with more than 4 digit numbers and extend by adding numbers with up to 3 decimal places (including where the decimal numbers have a different number of decimal places)			

ENSURE YOU USE A VARIETY OF APPLICATION METHODS FOR ADDITION

Concrete	Pictorial	Abstract
Combining two parts to make a whole (use other resources too e.g. eggs, shells, teddy bears, cars).	Children to represent the cubes using dots or crosses. They could put each part on a part whole model too.	$4+3=7$ Four is a part, 3 is a part and the whole is seven.
Counting on using number lines using cubes or Numicon.	A bar model which encourages the children to count on, rather than count all.	The abstract number line: What is 2 more than 4 ? What is the sum of 2 and 4 ? What is the total of 4 and 2 ? $4+2$

NEW GURLD
TRUST

Regrouping to make 10 ; using ten frames and counters/cubes or using Numicon. $6+5$	Children to draw the ten frame and counters/cubes.	Children to develop an understanding of equality eg. $\begin{aligned} & 6+\square=11 \\ & 6+5=5+\square \\ & 6+5=\square+4 \end{aligned}$
TO + O using base 10 . Continue to develop understanding of partitioning and place value. $41+8$	Children to represent the base 10 eg . lines for tens and dot/crosses for ones.	$41+8$ $\begin{aligned} & 1+8=9 \\ & 40+9=49 \end{aligned}$ $\begin{array}{r} 41 \\ +\quad 8 \\ \hline 49 \end{array}$
TO + TO using base 10. Continue to develop understanding of partitioning and place value. $36+25$	Chidren to represent the base 10 in a place value chart.	Looking for ways to make 10.

Conceptual variation; different ways to ask children to solve $21+34$

Word problems: In year 3, there are 21 children and in year 4, there are 34 children. How many children in total?	$\begin{array}{r} 21 \\ +34 \\ \hline \end{array}$		
$21+34=55$. Prove it	$21+34=$	Missing digit	oblems:
		10 s	15
	Calculate the sum of twenty-one	\bigcirc	(1)
		$\bigcirc \bigcirc$?
		?	5

