Vocabulary		Key Questions
share, share equally, one each, two each..	f, lots of, array	How many groups of...? How many in each group? Share... equally into... What can do you notice?
Example Questions		
Basic	Advancing	Deep
Use ... and ... in a number sentence. Illustrate the problem Memorise the division facts for the ... times table Match the answers to the number problems Tell a friend how you solved the problem	Compare which method you prefer to use Modify the numbers to change the answer Organise the numbers into a number sentence.	Prove how you know the answer is... Investigate how many different ways you can make ...using division. Explain you method Create two division number sentences from the given numbers.

	Objective	Concrete	Pictorial	Abstract
	-	I have 8 cubes, can you share them equally between two people?	Children use pictures or shapes to share quantities.	Share 8 buns between two people. $8 \div 2=4$
$\begin{aligned} & \sim \\ & \underset{\sim}{\sim} \\ & \end{aligned}$	$\begin{aligned} & \text { ㄴㅡㅡ } \\ & \text { 름 } \\ & \end{aligned}$	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding-	Use a number line to show jumps in groups. The number of jumps equals the number of groups. Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group.	$10 \div 5=2$ Divide 10 into 5 groups. Howv many are in each group?

Year 2

Calculating strand: DIVISION

Key Questions

Vocabulary

How many 10s can you subtract from 60?
I think of a number and double it. My answer is 8 . What was my number? If $12 \times 2=24$, what is $24 \div 2$?
Questions in the context of money and measures (e.g. how many 10p coins do I need to have 60p? How many 100 ml cups will I need to reach 600 ml ?)
Example Questions

Basic	Advancing	
Use \ldots and \ldots in a number sentence. Illustrate the problem Memorise the division facts for the \ldots times table Match the answers to the number problems Tell a friend how you solved the problem	Compare which method you prefer to use Modify the numbers to change the answer Organise the numbers into a number sentence.	Prove how you know the answer is... Investigate how many different ways you can make \ldots... divising
Explain you method		
Create two division number sentences from the given		
numbers.		

	Objective	Concrete	Pictorial	Abstract
	$\begin{aligned} & \text { 趷 } \\ & \text { 悥 } \end{aligned}$	1 have 8 cubes, can you share them equally between two people?	Children use pictures or shapes to share quantities.	Share 8 buns between two people. $8 \div 2=4$
	$\begin{aligned} & \text { 20ㅡㅡㅇ } \\ & \text { 릉 } \end{aligned}$	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding-	Use a number line to show jumps in groups. The number of jumps equals the number of groups. Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group. \square \square \square \square \square $10 \div 5=?$ $5 \times ?=10$	$10 \div 5=2$ Divide 10 into 5 groups. How many are in each group?

Calculating strand: DIVISION

Vocabulary
See Y1 and Y2
inverse

Key Questions

Questions in the context of money and measures that involve remainders (e.g. How many lengths of 10 cm can I cut from 81 cm of string? You have $£ 54$. How many $£ 10$ teddies can you buy?) What is the missing number? $17=5 \times 3+$ $=2 \times 8+1$

Example Questions

	Objective	Concrete	Pictorial	Abstract
$\begin{aligned} & \stackrel{\rightharpoonup}{m} \\ & \text { N} \\ & \stackrel{y}{\sim} \end{aligned}$		Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{rll} \text { Eg } 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences.	Find the inverse of multiplication and division sentences by creating four linking number sentences. $\begin{aligned} & 5 \times 3=15 \\ & 3 \times 5=15 \\ & 15 \div 5=3 \\ & 15 \div 3=5 \end{aligned}$
	드N 흔 는	Use place value counters to divide using the short division method alongside. $96 \div 3$ Sharing 40 into three groups. We can put 1 ten in each group and we have 1 ten left over. We exchange this ten for 10 ones and then share the ones equally among the groups. We look at how many are in each group.	$15: 3=5$ Count in 3 s until reaching 18. $27 \div 4=6 \mathrm{r} 3$ for 'remainaers', count in 4 s until just before 27 , as 'remainder'.	Short division: Limit numbers to NO remainders in the answer OR corried (each digit muat be a multiple of the divisor) $\begin{array}{r} 32 \\ 3 \longdiv { 9 6 } \end{array}$

see year 4
common factors, prime number, prime factors
composite numbers, short division
square number, cube number
inverse, power of
Basic

Use bus stop method to divide... by
List all the different vocabulary for division.
Tell me the method you have used to find the total

Vocabulary

Key Questions

What do you notice?
What's the same? What's different?
Can you convince me?
How do you know?
\qquad

Predict if $\mathrm{a} \div \mathrm{b}$ would total an odd or an even number. Estimate the answer to ..., work out the answer to check your estimation.
Explain your method.
Organise your calculation

Deep

Create your own word problem.
Design your own recipe for 4 meal then scale it down for 2 people.
Investigate how many miles would be travelled each day if
given a distance and total number of days travelled.

	Objective	Concrete	Pictorial	Abstract
$\begin{aligned} & \text { n } \\ & \text { 镸 } \end{aligned}$		See Year 4 for concrete method. (Using numbers where there would be a remainder.)	division by chunking on a numberline $96 \div 4=24$ How many lots of 4 altogether? $10+10+4=24$	The idea is to get as close to 0 as possible subtracting away multiples $98 \div 6=16$ r2 \quad (with remainders) no more 'chunks of 6' can be subtracted So 2 becomes the remainder $98 \div 6=16 \times 2$
		$\begin{aligned} 364 \div 3= & \frac{121 \mathrm{rem} 1}{364} \end{aligned}$$\ominus \odot$ \odot $\stackrel{\circ}{\circ}$ \ominus \odot \odot	See above.	Move onto divisions with a remainder. $\begin{array}{rllll} & 8 & 6 & & \\ \hline & & 3 & 3 \end{array}$

$2 \mathrm{~d} \div 1 \mathrm{~d}$ with remainders using lollipop sticks. Cuisenaire rods, above a ruler can also be used.
$13 \div 4$
Use of lollipop sticks to form wholes- squares are made because we are dividing by 4 .

There are 3 whole squares, with 1 left over.

Sharing using place value counters
$42 \div 3=14$

10 s	1s

		= 14	000000	
10s	1s		10 s	1s
-	0000		-	
-	0000		-	
-	0000		-	

Children to represent the lollipop sticks pictorially

There are 3 whole squares, with 1 left over

Children to represent the place value counters pictorially.

$13 \div 4-3$ remainder 1

Children should be encouraged to use their times table facts; they could also represent repeated addition on a number line.
' 3 groups of 4 , with 1 left
over

Children to be able to make sense of the place value counters and write calculations to show the process.
$42 \div 3$
$42=30+12$
$30 \div 3=10$
$12 \div 3=4$
$10+4=14$

1. Make 615 with place value counters.
2. How many groups of 5 hundreds can you make with 6 hundred counters?
3. Exchange 1 hundred for 10 tens.
4. How many groups of 5 tens can you make with 11 ten counters?
5. Exchange 1 ten for 10 ones.
6. How many groups of 5 ones can you make with 15
ones?
Long division using place value counters $-R 544 \div 12$

1000s	100s	10s	Is	We can't group 2 thousands into groups of 12 so will exchange them.	
\bigcirc	8000	0000	0000		
1000s	100s	10s	Is	We can group 24 hundreds into groups of 12 which leaves with 1 hundred.	$\begin{gathered} \frac{02}{\frac{02}{2544}} \\ \frac{24}{1} \end{gathered}$
		ण00	ण000		

